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Al~traet--Predict ion of the liquid level in stratified two-phase upwards flow shows that  one may 
have multiple solutions. In this case it is necessary to determine which solutions will actually occur and 
whether hysteresis is possible, namely whether it is possible to have two or more solutions for the same 
operating conditions. In this work the stability of the solutions for stratified flow is considered using two 
types of  stability analyses: (1) structural stability analysis; and (2) interfaeial stability analysis 
(Kelvin-Helmholtz,  K-H).  For  the K - H  stability analysis we used two methods: an approximate 
simplified method suggested by Taitel & Dukler; and a more rigorous method suggested by Bamea, which 
is based on a combination of the viscous K - H  and inviscid K - H  analyses. The results show that whenever 
three solutions exist only the first, i.e. the solution with the thinnest liquid level, is stable. The middle 
solution is always structurally unstable (linearly), whereas the third solution is structurally unstable to 
large disturbances (non-linear stability). The third solution is usually also unstable to the K - H  type of 
instability. As a result it is concluded that hysteresis is not  possible and that only the thinnest solution 
will be observed practically. 

Key Words: two-phase, stratified flow, stability, Kelvin-Helmholtz,  flow pattern 

I N T R O D U C T I O N  

The prediction of the liquid level in stratified flow is the first step in analyzing the stability of 
stratified flow and for developing the transition criteria to either slug or annular flow. The transition 
criteria are based on the classical linear Kelvin-Helmholtz (K-H) stability analysis. Taitel & Dukler 
(1976) used a simplified K-H  analysis and derived a criterion for the transition from stratified flow. 
Wallis (1969), Lin & Hanratty (1986) and Wu et al. (1987) included the effect of the shear stresses 
in their linear stability analyses (the viscous K-H analysis). Recently, Barnea (1991a) suggested a 
combined model which uses the viscous and inviscid K-H theories for the determination of the 
transition to slug and annular flow. 

All the above stability analyses are performed on the equilibrium stratified flow solution. As 
pointed by Baker & Gravestock (1987), the solution for the steady-state liquid level is not unique 
and multiple solutions may occur for some operating conditions in upward inclined flow. In this 
case one may question whether multiple holdup values exist for stable stratified flow. Landman 
(199 l a,b), who considered this question, suggested the existence of two possible physical solutions 
in the region of stratified flow. 

A similar problem has been raised by Barnea & Taitel (1989) and Barnea (1991b) for the case 
of annular flow. They suggested that one should distinguish between the stability of the interface 
and the stability of the steady-state solution, where the solution is obtained for an average film 
thickness using an effective interfacial shear stress. A similar concept will be applied here to the 
case of stratified flow. 

The first step in the present work is to perform a stability analysis that will determine which 
solution is physically stable with respect to its average film thickness (even if the interface is unstable 
due to the K-H instability). This analysis will be termed the "structural stability analysis". Only 
when the solution is structurally stable is the K-H stability analysis performed as a further check 
for the stability of stratified flow. 

An alternative way to look at the problem is to perform the K-H analysis on the various 
solutions and then to check for the stability of the structure for those solutions that are in the region 
of stratified flow. 
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STRUCTURAL STABILITY 

Structural linear stability 
The analysis of stratified flow is based here on the "two-fluid model", where transient integral 

continuity and momentum equations are applied to the gas and the liquid, together with the 
appropriate "constitutive" relations. Assuming incompressible isothermal flow, neglecting surface 
tension effects and equating the pressure drop in the two phases yields the following three equations 
(Barnea 1991a): 

8RL RL (~UL 63RL 
8---t- + 8x + UL ~-x = O, [1] 

a n d  

where 

ORo OUc U~ ~R~ 
8t + Rc---~x-x + 8x =0,  

OU L OU G OU L 0 U  G A 0R L 
p~ - - ~  - pc - - h -  + p~ v~  ~ - pc v c  - E x  + (pL - pc )g  cos  t~ A~ ~-Y- 

[2] 

= F, [3] 

~'LSL TGS G r~S~(1 1)  
- -  (PL -- Pc)g sin fl, [4] F -  ARL 

A is the cross-sectional area, U is the axial average velocity, z is the wall shear stress, zi is the 
interfacial shear stress, S and S~ are the perimeters over which z and vi act, R is the phase holdup, 
p is the phase density and fl is the angle of inclination from the horizontal (positive for upward 
flow). A[ = dAL/dhL, where hL is the liquid level. The subscripts L and G denote liquid and gas, 
respectively. 

When the RHS of [3] equals zero (F = 0) the steady-state solution for the liquid level is obtained. 
The shear stresses TL, TC and z~ are evaluated as follows: 

APLy ~ TL = -- , [5] 

a n d  

where 

pcU~ 
Tc = f c  - - - f -  [6] 

Ti = f p G ( u c  - uDI uG - uLI 

\ IlL / \ IlG /] 

[7] 

[8] 

D L and Dc are the hydraulic diameters evaluated in the following manner: 

4AL 4AG 
DL = SL ' Dc = Sc + S-~" [9] 

The coefficients Cc and C L equal 0.046 for turbulent flow and 16 for laminar flow, n and m take 
the values of 0.2 for turbulent flow and 1.0 for laminar flow. The interfacial friction factor was 
assumed to have a constant value o f f - - 0 . 0 1 4 ,  as suggested by Cohen & Hanratty (1968) for 
stratified wavy flow, or fc  when f~ > 0.014. 
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Taitel & Dukler (1976) showed that all the terms in F can be expressed as a function of the liquid 
level. They further expressed the dimensionless liquid level hL/D as a function of only two 
dimensionless parameters. The Lockhart-Martinelli parameter 

( )os 
and an inclination parameter 

( P L  - -  JOG)g sin fl 

GS 

where dP/dx is the axial pressure drop and the subscript S is for "superficial". 
The dependence of hElD on X and Y is shown in figure 1 (Taitel & Dukler 1976; Barnea 1987). 

It can be clearly seen that for Y = 4 and 5 multiple solutions for hElD exist. Although the range 
of parameters of Y for which multiple solutions exist is quite narrow it may be just the actual range 
in practice (Baker & Gravestock 1987). In figures 2-4 the solutions for hElD are presented in 
dimensional coordinates for an upward inclination angle of 1 °. It can be seen that multiple solutions 
are obtained for a wide range of liquid flow rates and a narrow range of gas flow rates. 

When multiple solutions occur, the question of interest is which of these steady states are realized 
physically and will actually occur. 

A very similar problem has been shown to exist in annular flow. Barnea & Taitel (1989) showed 
that the two-fluid model may yield multiple solutions for the average film thickness in steady 
annular flow. The differential form of the two-fluid model for annular flow (neglecting surface 
tension) is ill-posed and a linear stability analysis of annular flow using the two-fluid model and 
taking the shear stresses into account shows, as is well known, that the steady-state solutions are 
always unstable due to the K-H type instability (Barnea & Taitel 1989). It has been shown 
(Andreussi et al. 1985; Barnea 1991a) that this instability (the "viscous K-H instability") is related 
to the instability of the interface resulting in large-amplitude roll waves. Thus, this kind of 
instability is not appropriate to address the question of which of the steady-state solutions is a 
stable structure with respect to the average film thickness. 

Barnea & Taitel (1989, 1990) suggested a simplified formulation where a uniform film thickness 
is assumed along the pipe. It has been shown that a stability analysis on this simplified formulation 
provides the desired answer as to whether annular flow with an unstable wavy interface is a stable 
structure which can be realized physically. Recently, Barnea (1991b) examined the stability of the 
structure of annular flow by using the discrete form of the two-fluid model and obtained the same 
stability criteria as that obtained by Barnea & Taitel (1989, 1990), for a uniform averaged film. 

Considering now the stability of the multiple steady-state solutions for stratified flow, one faces 
similar problems to those described above. A linear stability analysis using the full two-fluid model 
[1]-[4] yields the following criterion for the stability of the steady-state solutions in stratified flow 
(Barnea 1991a): 

PEP(3 ( U  G _ UL)2 PL -- PC, A 
(Cv - Clv) 2 + p2RLRc P g cos fl A--~L < 0, [12] 

where 

= P L +  PC 
P R E R-"-G " 

Cv is the critical wave velocity on the inception of instability: 
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and 

PL UL RG or- PG UG RL 
Clv = [14] 

PL RG + PG RE 

As has been mentioned (Andreussi et al. 1985; Barnea 1991a) this criterion [12] is related to the 
interfacial instability and indicates the appearance of large-amplitude roll waves. However, in order 
to examine whether the steady-state solution for stratified flow is physically stable with respect to 
its average film thickness, even when the interface is unstable due to K-H instability, the approach 
taken for annular flow is also used here. 

A hypothetical mechanism that causes the liquid level to be uniform along the pipe of length 
l is assumed and a quasi-steady-state is considered for the gas phase. Transient momentum and 
continuity equations are obtained for the liquid phase: 

d---t - =  --RL----I UL-- PL [151 

and 

dRL = 
dt (ULs- ULRL), [16] 

where F is given by [4]. 
A linear stability analysis on the above two ordinary differential equations yields the following 

criterion for the structural stability of cocurrent stratified flow: 

Barnea (1991b) showed that this same criterion is equivalent to the requirement that the continuity 
waves will propagate in the downstream direction, namely that 

C~: 3ULs 

Based on [4] it can be observed that F always increases with Uas for constant ULS and RE and 
decreases with ULS for constant Uas and RE. Therefore the denominator in [18] is always positive 
and thus the stability criterion in [18] reduces to [17]. Note that the expression for the kinematic 
wave velocity, C~, is equal to the critical K-H wave velocity, Cv [13]. 

Figure 5 shows the function F vs hL/D for a specific set of conditions. The zero values of F (the 
intersection with the broken line) yield the steady-state solutions. As can be seen for UGs = 8 m/s 
three steady-state solutions exist. For U~s > 8 m/s a single solution with a low liquid level is 
obtained, while for UGs < 8 m/s a single value that corresponds to a high liquid level is obtained. 
The stability criterion [17] can be easily applied by observing the slope of the function F vs hL/D. 
Thus, when three steady-state solutions are obtained the first solution (the smallest h L) and the third 
solution (the largest hE) are linearly stable with respect to the structure, while the middle solution 
is unstable and therefore would not exist. Note that a single solution, thin or thick, is always linearly 
stable. 

More information on the steady-state solutions are plotted in figures 2-4 for selected sets of 
conditions, where hE/D vs ULs is plotted for different values of the gas flow rates. In these figures 
the linearly unstable solutions are plotted as a dotted line. 

Structural non-linear stability 

As mentioned above, when three steady-state solutions are obtained the first (thin) and the third 
(thick) solutions are linearly stable. The third solution, however, can be unstable to large 
disturbances and as a result would not exist. The analysis of this kind of non-linear instability is 
examined by a numerical simulation using the simplified transient formulation, presented as [15] 



826 D, BARNEA and Y. TAITEL 

and [16], that was used to analyze the linear structural stability. Numerical runs were carried out 
around the three steady-state points obtained, and the path on a phase diagram was observed. 

An example of such a transient numerical simulation, for the case ULS=0.001 m/s and 
Ucs = 8 m/s, is shown in figure 6, where the trajectories of the transient simulation are plotted on 
a phase space of UL VS RL. The transient simulation starts with conditions close to the linearly 
unstable solution (UL = 0.0135 m/s and RL = 0.0743). As seen, when we start at a point somewhat 
to the left of the unstable solution B, we end up with the stable "thin" solution A (UL = 0.1578 m/s 
and RL = 0.00634). Starting at a point to the right of the unstable solution yields a trajectory that 
ends up eventually at the stable thick solution C (UL = 0.003 m/s and RL = 0.337), but the trajectory 
is in the form of severe oscillations before the point of steady state is reached. We consider the 
third solution as unstable because the trajectory passes through negative liquid velocities. When 
the liquid velocity becomes negative the structure of co-current flow is destroyed and the transition 
to slug flow will ensue (Barnea & Taitel 1990). This negative value of UL is obtained also when 
the starting point is quite close to the third solution. 

In order for a steady-state solution to be stable, it is required that all trajectories will end up 
at the steady-state point without passing through negative liquid velocities during the dynamic 
response. It is not practical to determine this non-linear stability condition by checking the dynamic 
response of all possible disturbances. A way out of solving this problem is as follows: If the RHS 
of the momentum equation [15] and the continuity equation [16] are plotted on a phase diagram 
of UL VS RL the intersections of these curves yield the steady-state solutions. Figure 7 shows this 
phase diagram for different values of the pipe length. The dashed line, [16], is always positive while 
the solid lines [15], may have negative values for the liquid velocities. As can be seen, the lowest 
values of the liquid velocities are obtained for the limiting case of l --, ~ .  It is interesting to observe 
that the transient simulation follows approximately the momentum curve (the solid line) for long 
pipes (large l), while for short pipes it follows the continuity curve (the dashed line). When the pipe 
length approaches ~ ( / ~  oo) and the momentum line does not pass through negative liquid 
velocities, then stability to finite disturbances is insured for all cases. Thus, it may serve as a 
criterion for insuring stability to finite disturbances. Obviously this is not the condition for the case 
in figures 6 and 7, where the third solution is clearly an unstable structure. 

Following this criterion for non-linear stability all unstable cases in figures 2-4 are plotted as 
a dashed line. As seen, the third of the three steady-state solutions (the thick liquid level) is almost 
always unstable. But, also when a single solution, which corresponds to a thick film thickness, is 
obtained, the solution may be unstable to finite disturbances. This can be demonstrated by figure 
5. For UGs = 9 m/s we have a single "thin" solution which is stable. For Ucs = 6 m/s we have a 
single "thick" solution which is linearly stable but unstable due to this non-linear criterion. 

In figures 2-4 the stable solutions for the liquid level are plotted as solid lines, the linearly 
unstable solutions as dotted lines and the non-linear unstable solutions as dashed lines. Usually, 
when we have three solutions the thinnest solution is stable, the middle solution is linearly unstable 
and the thickest solution is non-linearly unstable. When a single solution exists, then it is always 
linearly stable but it may be unstable to finite disturbances, as can be seen, for example, for 
U~s < 9 m/s (figure 2). Note that for Ucs > 9 m/s the solutions are always stable. 

In looking for the possibility of two simultaneous solutions to be structurally stable we can see 
that this is almost impossible, though it may occur for a very narrow range of gas velocities. For 
a water-air system (figure 2) only for U~s ~-9 m/s is it possible to get two stable steady-state 
solutions for a very narrow range of ULS (~--0.01 m/s). The situation is the same for the higher 
viscous case (figures 3 and 4) were two stable solutions are possible for U~s-  9 and --30 m/s, 
respectively. Thus, although, theoretically multiple solutions may be possible, they are very unlikely 
to occur in practice. 

K - H  STABILITY 

When stratified flow is structurally stable, steady-state stratified flow is not yet guaranteed and 
the transition from stratified flow may occur due to K - H  interfacial instability. Three types of K - H  
instabilities were used: simplified K - H  stability (Taitel & Dukler 1976); inviscid K - H  stability; and 
viscous K - H  stability (Wu et al. 1987; Lin & Hanratty 1986). 
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Barnea (1991a) suggested a combined model which uses the viscous and inviscid K-H theories 
for the determination of the transition from stratified to slug and annular flow. According to this 
model, the stability condition obtained by the viscous K - H  analysis [12] indicates the appearance 
of large-amplitude roll waves on the interface. For the case of high liquid holdup (hL/D > 0.5) this 
unstable wave region becomes slug flow. The inviscid K - H  analysis, on the other hand, results in 
an unbounded exponential growth of the waves and designates an absolute transition from 
stratified flow. Thus, the neutral stability condition obtained by the inviscid analysis demarcates 
between annular flow and roll waves, within the high void region. Barnea (1991a) also showed that 
the simplified K - H  analysis, suggested by Taitel & Dukler (1976) is fairly consistent with the 
aforementioned combined method, provided the liquid viscosity is not too large (kt L < 100). 

The stable solutions due to the K - H  analyses are also shown in figures 2-4. Three lines of neutral 
stability are plotted in these figures: (1) the Taitel & Dukler approximate approach (designated 
T&D); (2) the viscous K - H  stability (designated VKH); and (3) the inviscid K-H stability line 
(designated IKH). Note that in figures 2 and 4 the T&D and VKH neutral stability lines practically 
overlap. The theory of Taitel & Dukler (1976) suggests that the region within the neutral boundary 
is stratified (smooth and wavy). Based on more accurate considerations, Barnea (1991a) suggested 
that the region within the VKH line is stratified smooth or wavy with small amplitude, the region 
outside the IKH line is non-stratified (slug or annular) and the region between the VKH and IKH 
lines is stratified with roll waves for hL/D < 0.5 and slug for hL/D > 0.5. Thus, figures 2-4 can serve 
also as flow pattern maps. Furthermore, they may indicate the possible flow pattern for all the 
steady-state solutions. 

It is important to mention that in previous work, K - H  analysis was always applied to the first 
solution only, i.e. to the solution with the thinnest liquid level. As an example, figure 8 shows the 
stratified/non-stratified transition, as suggested by Taitel & Dukler (1976), based on the first 
steady-state solution. Within this stratified region there is only a small subregion where multiple 
solutions exist. However, only the first solution is physically realistic, since the second intermediate 
solution is structurally linearly unstable and the third (thick) solution is structurally unstable due 
to non-linear instability. Note also, that the third solution is usually also unstable to K-H 
instability. Landman (1991a,b) did not consider the structural stability and obtained that the 
intermediate solution may exist. 

THE COMBINED STRUCTURAL AND K - H  STABILITY ANALYSES 

In order to examine the existence of stratified flow solutions one should consider both the 
structural stability of the solution as well as one of the stratified/non-stratified transition criteria 
which are based on the K - H  instability. 

Figures 2-4 present the complete information which is necessary to make the decision as to which 
of the multiple steady-state solutions for stratified flow will actually occur. In figures 2-4 the 
multiple solutions for hL/D are presented as well as the various kinds of instabilities. The structural 
instability is indicated by the dotted (for the linear case) and the dashed lines (for the non-linear 
instability). The regions that include the stable solutions for the various types of K - H  stability 
(T&D, VKH and IKH) are also shown in these figures. 

For example, in figure 2 one can see that within the region bounded by the T&D transition 
criterion, multiple solutions almost do not exist since only the first solution is structurally stable. 
The only exception is observed for Uos = 9 m/s and a very narrow range of liquid flow rates, where 
two simultaneous solutions may be structurally stable. Thus, theoretically, hysteresis can occur at 
a very narrow region of Ucs --- 9 m/s and ULS ----- 0.1 m/s. This precise occurrence, however, is very 
unlikely. 

Based on Barnea's (1991a) approach for the stratified/non-stratified transition criterion, the 
region bounded by the VKH stability curve is stratified smooth or stratified with small-amplitude 
waves, while the region bounded between the VKH, and IKH and the hL/D = 0.5 curves indicates 
the existence of stratified flow with large-amplitude waves. However, all the solutions that are 
structurally unstable and bounded within the abovementioned region will not occur in practice. 
For example, the solutions along Ucs = 8 m/s, which are bounded between the VKH, the IKH and 
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hL/D < 0.5 curves, are structurally unstable and will not exist; while solutions along UGs = 9, 10 
and 20 m/s, which are bounded in this region, are structurally stable and will result in stratified 
flow with high-amplitude waves. 

Very similar results are obtained for a liquid viscosity of 100 cP, as indicated by figure 3 (for 
higher viscosities we do not have multiple solutions), and for larger pipe diameters and high 
viscosity (figure 4). As can be seen, the possibility of hysteresis occurs again--at Ucs = 9 m/s for 
the case shown in figure 3 and at 30 m/s for the case shown in figure 4. 

Based on the results of the cases examined it seems that when three solutions do exist it is 
sufficient to check only the thin solution for K-H stability in order to determine whether the flow 
will be stratified. The other two solutions are always structurally unstable and thus need not be 
examined. This general statement could, however, be adopted with caution since it is possible that 
it does not apply for all operating conditions. 

SUMMARY AND CONCLUSIONS 

The calculation of the liquid level in upwards stratified flow can lead to multiple solutions and 
the question of interest is which solution is realistic and will actually exist. 

The validity of the solutions is analyzed by examining the stability of the steady-state solutions. 
Two types of instability are considered: (1) structural instability (linear and non-linear); and (2) 
K-H instability (which consists of the T&D simplified approach and the combined VKH and IKH 
analyses). When a steady-state solution is unstable with respect to either of the aforementioned 
instabilities, this solution will not exist. 

An outline of the conclusions is as follows: 

(1) Multiple solutions for upwards inclined stratified flow occur at low liquid flow 
rates and a narrow range of gas flow rates. 

(2) When multiple solutions occur we have three solutions for the liquid level. The 
thinnest solution is the one that is always stable. The middle solution is always 
linearly structurally unstable and the thickest solution is almost always unstable 
both to structural and K-H instability, indicating that it would not exist. 

(3) The possibility of hysteresis, namely the possible existence of two liquid levels for 
the same operating conditions, is very unlikely. For all the examples tested we 
observed only an extremely narrow region for which this can happen (see figures 
2 and 3 for ULS = 9 m/s and figure 4 for ULs = 30 m/s). 
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